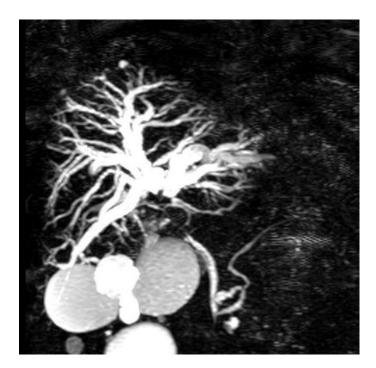
Tumoren van de galwegen: diagnostiek en therapeutische opties

Frans van der Heide, UMCG

Cursorisch onderwijs MDL 4 oktober 2017

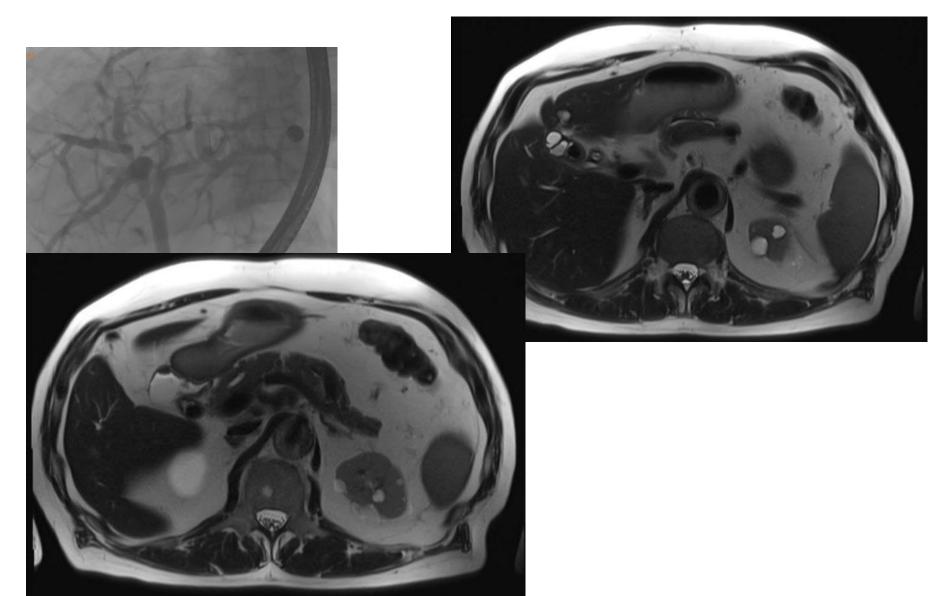


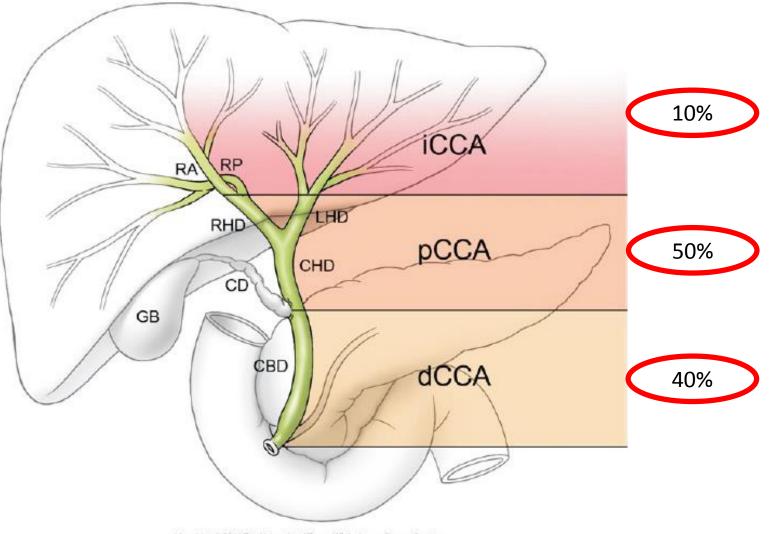
GRONINGEN

• Geen disclosures

Casus

• 78 years old man, silent icterus





- Spybite biopsies: atypical proliferative epithelium. Suspicious for malignancy, no definite diagnosis
- Brush: atypical cells, suspicious for adenocarcinoma
- Stent: no malignancy

6 months later: no complaints, normal lab

Cholangiocarcinoma

Visual Art: @ 2014 The University of Texas MD Anderson Cancer Center

Blechacz, Gut and Liver, 2017

Table 1. Risk Factors for Cholangiocarcinogenesis

Established risk factors

Primary sclerosing cholangitis

Hepatobiliary parasites (Opisthorchis viverrini, Clonorchis sinensis)

Hepatolithiasis

Caroli's disease

Choledochal cysts (types I and IV)

Thorotrast

Blechacz, Gut and Liver, 2017

Patients with PSC have an increased lifetime risk to develop CCA.

This risk is:

– GREEN: lower than 5%

– RED: higher than 5%

Diagnostics

MRI/MRCP before ERCP

• Diagnosis?

wall thickening/ asymmetry/ luminal irregularity

- Imaging bile duct wall blurred by stents
- Resectability
- Surgical plan:
 - which liver lobe to resect?
 - Porta embolisation?
- Endoscopic plan

DD

- Up to 15% of suspicious biliary strictures are postoperatively found to be benign
- Benign causes:
 - Mirrizi's syndrome
 - primary sclerosing cholangitis
 - previous biliary surgery
 - IgG4-related biliary strictures
 - IgG4 in serum is increased in more than 80% of patients with IgG4 disease
 - True is green
 - False is red

Culver, Nature reviews Gastro & Hepatol, 2016

DD

- Up to 15% of suspicious biliary strictures are postoperatively found to be benign
- Benign causes:
 - Mirrizi's syndrome
 - primary sclerosing cholangitis
 - previous biliary surgery
 - IgG4-related biliary strictures
 - men/ >60 yrs/ blue collar workers
 - serum IgG4 > 1.4 g/l in 65-80%
 - qPCR serum lgG4:lgG RNA ratio AMC

Culver, Nature reviews Gastro & Hepatol, 2016 Doorenspleet, Hubers et al, Hepatology, 2016

ERCP: diagnostics

	Pooled Sensitivity	Pooled Specificity
Brush	0.45	0.99
Fluoroscopy guided biopsies	0.48	0.99
Combined	0.59	1.00

Navaneethan, Gastrointestinal Endoscopy, 2015

How often do you brush?

GREEN ABOUT 5 TIMES RED ABOUT 10 TIMES

TABLE 2. Characteristics of brushings, intraductal biopsies, and cytological interpretations

Custo la silan Li

Study	No. of brush passes, tissue bites	tive FNA te
Pugliese et al, 1987 ²⁰	NR, NR	
Pugliese et al, 1995 ²¹	Multiple, 2-3	
Ponchon et al, 1995 ¹⁹	NR, NR	
Howell et al, 1996 ¹⁶	NR, NR	Only positiv
Sugiyama et al, 1996 ²³	NR, 1-5	
Jailwala et al, 2000 ¹⁷	10-15, 1-2	Only positiv
Rösch et al, 2004 ²²	2, 6	
Kitajima et al, 2007 ¹⁸	≥5, 2-5	High-grad
Weber et al, 2008 ²⁴	Multiple, NR	
NR, Not reported.		

Navaneethan, Gastrointestinal Endoscopy, 2015

Cholangioscopy

► Fig. 1 Findings on digital, single-operator, intraductal cholangiopancreatoscopy. a Benign concentric stenosis. b Benign coarse granular mucosal changes. c Dilated tortuous tumor vessels in patient with cholangiocarcinoma (CCA). d Infiltrative stricture with tumor vessels in patient with CCA. e Villous mass in patient with biliary intraductal papillary mucinous neoplasm (IPMN). f Fish-egg lesion in patient with IPMN.

Shah, Endoscopy, 2017

Neoplasia

Table 2 Digital, single-operator, intraductal cholangiopancreatoscopy findings in patients with confirmed neoplasia (n = 29).

Findings *	n (%)
Tumor vessels	13 (45)
Infiltrative stricture	12 (41)
Villous mass	9 (31)
Finger-like villiform projections	5 (17)
Low papillary mucosal projections	3 (10)
Concentric stenosis	2 (7)
Coarse granular mucosa	1 (3)
* More than one finding may exist per patient	

* More than one finding may exist per patient.

Shah, Endoscopy, 2017

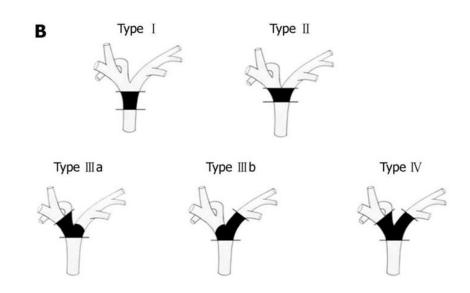
Benign

► Table 3 Digital, single-operator, intraductal cholangiopancreatoscopy findings in patients with benign disease (n = 45).

Findings*	n (%)
Concentric stenosis	14 (31)
Normal/erythematous changes	12 (27)
Coarse granular mucosa	6 (13)
Low papillary mucosal projections	5 (11)
Infiltrative stricture	4 (9)
Nodule(s)	4 (9)
Biliary sludge	3 (7)
Finger-like villiform projections	2 (4)
Tumor vessels	1 (2)
Villous mass	1 (2)
Unknown	7 (16)

* More than one finding may exist per patient.

Shah, Endoscopy, 2017

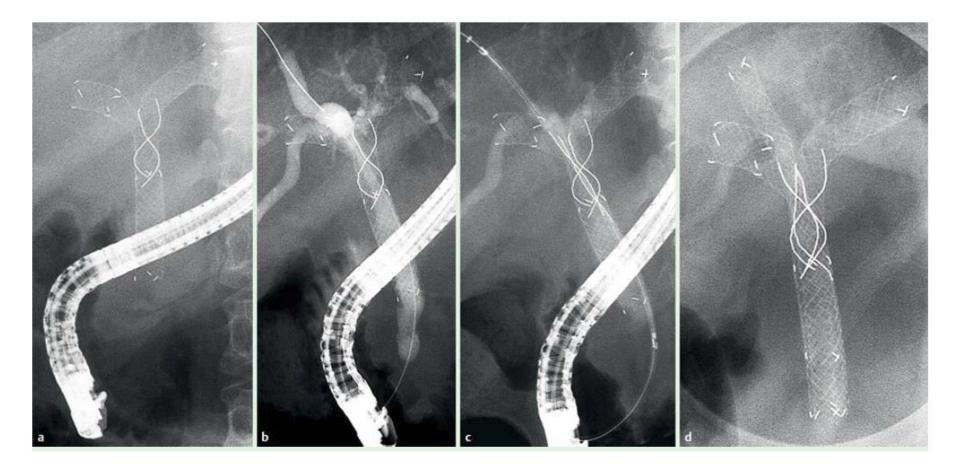

ERCP: diagnostics

	Pooled Sensitivity	Pooled Specificity
Brush	0.45	0.99
Fluoroscopy guided biopsies	0.48	0.99
Combined	0.59	1.00
Cholangioscopy guided biopsies	0.60 (2015) 0.86 (2017)	0.98 (2015) 1.00 (2017)
Visual cholangioscopic findings	0.84 (2015) 0.97 (2017)	0.83 (2015) 0.93 (2017)

Navaneethan, Gastrointestinal Endoscopy, 2015 Shah, Endoscopy, 2017

Therapy

- Which site to drain?
- 1 or 2 stents?
- Plastic or metal stents?
- Endoscopic or percutaneous drainage?



Guidelines

- ASGE (2013):
 - Unilateral endoscopic biliary stent placement directed by prior imaging achieved palliation of jaundice equal to bilateral stents, but with lower risk of cholangitis (Hintze 2001, De Palma 2001) and lower cost (Harewood 2002)
 - Endoscopic palliation of jaundice should be performed by using MRC as a guide for unilateral drainage to minimize the risk of cholangitis
- ESGE (2012):
 - **Resectability** evaluated by imaging techniques in **absence** of stents
 - Aim: draining >50% of liver volume
 - **Single stent** in most accessible biliary system proposed for palliation
 - Drain duct(s) unintentionally opacified

ESGE 2012: plastic vs SEMS

- Similar short-term results
- SEMSs provide a longer patency
- SEMSs recommended if:
 - life expectancy >3 months
 - biliary infection

Stent-in-stent or side-by-side

Moon et al, Endoscopy, 2016

Other developments

- CLE
- NBI
- Fluorescence In Situ Hybridization (FISH)
- Next-generation sequencing

- RFA
- Stenting with photodynamic therapy (PDT)
- Liver transplantation

Liver transplantation

Table 1. Mayo clinic criteria for inclusion in the transplantation protocol for hilar cholangiocarcinoma [15-17].

Diagnosis	Pathologically confirmed hilar cholangiocarcinoma or CA19-9 >100 ng/ml in the presence of a radiographically malignant stricture
Tumor	Tumor size < 3 cm
Distant metastases	Absence of distant metastases on CT (and/or MRI) and isotope bone scan
Lymph node metastases	Negative EUS-FNA of regional lymph nodes and negative staging laparotomy/ hand-assisted-laparoscopy with biopsy of regional lymph nodes

Abbreviations: CA 19–9; carbohydrate antigen 19–9, EUS-FNA; Endoscopic ultrasonography-fine needle aspiration.

Summary

- Hard to make a definite diagnosis
- Be aware of IgG4
- Be aware of PA in presence of a stent
- First MRCP and MDO
- Therapy:
 - 1 stent in remaining liver lobe
 - SEMS or plastic?
 - in difficult cases => PTCD

Suggested readings

- Blechacz, Cholangiocarcinoma: Current Knowledge and New Developments, Gut and Liver, 2017
- Culver, IgG4-related hepatobiliary disease: an overview. Nature reviews Gastro & Hepatol, 2016

Cholangioscopy

• video afw slijmvlies.mp4